A Novel Transformation of Polychlorinated Biphenyls by Rhodococcus sp. Strain RHA1.
نویسندگان
چکیده
We have characterized a biphenyl degrader, Rhodococcus sp. strain RHA1. Biphenyl-grown cells of strain RHA1 efficiently transformed 45 components in the 62 major peaks of a polychlorinated biphenyl (PCB) mixture of Kanechlors 200, 300, 400, and 500 within 3 days, which includes mono- to octachlorobiphenyls. Among the intermediate metabolites of PCB transformation, di- and trichlorobenzoic acids were identified. The gradual decrease of these chlorobenzoic acids during incubation indicated that these chlorobenzoic acids would also be degraded by this strain. The effect of the position of chlorine substitution was determined by using PCB mixtures that have chlorine substitutions mainly at either the ortho or the meta position. This strain transformed both types of congeners, and strong PCB transformation activity of RHA1 was indicated. RHA1 accumulated 4-chlorobenzoic acid temporally during the transformation of 4-chlorobiphenyl. The release of most chloride in the course of 2,2(prm1)-dichlorobiphenyl degradation was observed. These results suggested that RHA1 would break down at least some PCB congeners into smaller molecules to a considerable extent.
منابع مشابه
Cloning and characterization of benzoate catabolic genes in the gram-positive polychlorinated biphenyl degrader Rhodococcus sp. strain RHA1.
Benzoate catabolism is thought to play a key role in aerobic bacterial degradation of biphenyl and polychlorinated biphenyls (PCBs). Benzoate catabolic genes were cloned from a PCB degrader, Rhodococcus sp. strain RHA1, by using PCR amplification and temporal temperature gradient electrophoresis separation. A nucleotide sequence determination revealed that the deduced amino acid sequences encod...
متن کاملAerobic biotransformation of polybrominated diphenyl ethers (PBDEs) by bacterial isolates.
Polybrominated diphenyl ethers (PBDEs) are flame retardants that have been used in consumer products and furniture for three decades. Currently, very little is known about their fate in the environment and specifically about their susceptibility to aerobic biotransformation. Here, we investigated the ability of the polychlorinated biphenyl (PCB) degrading bacteria Rhodococcus jostii RHA1 and Bu...
متن کاملCharacterization of two biphenyl dioxygenases for biphenyl/PCB degradation in A PCB degrader, Rhodococcus sp. strain RHA1.
Rhodococcus sp. RHA1 induces two biphenyl dioxygenases, the BphA and EtbA/EbdA dioxygenases, during growth on biphenyl. Their subunit genes were expressed in R. erythropolis IAM1399 to investigate the involvement of each subunit gene in their activity and their substrate preferences. The recombinant expressing ebdA1A2A3etbA4 and that expressing bphA1A2A3A4 exhibited 4-chlorobiphenyl (4-CB) tran...
متن کاملCharacterization of biphenyl catabolic genes of gram-positive polychlorinated biphenyl degrader Rhodococcus sp. strain RHA1.
Rhodococcus sp. strain RHA1 is a gram-positive polychlorinated biphenyl (PCB) degrader which can degrade 10 ppm of PCB48 (equivalent to Aroclor1248), including tri-, tetra-, and pentachlorobiphenyls, in a few days. We isolated the 7.6-kb EcoRI-BamHI fragment carrying the biphenyl catabolic genes of RHA1 and determined their nucleotide sequence. On the basis of deduced amino acid sequence homolo...
متن کاملPolychlorinated biphenyl/biphenyl degrading gene clusters in Rhodococcus sp. K37, HA99, and TA431 are different from well-known bph gene clusters of Rhodococci.
Four kinds of polychlorinated biphenyl (PCB)-degrading Rhodococcus sp. (TA421, TA431, HA99, and K37) have been isolated from termite ecosystem and under alkaline condition. The bph gene cluster involved in the degradation of PCB/biphenyl has been analyzed in strain TA421. This gene cluster was highly homologous to bph gene clusters in R. globerulus P6 and Rhodococcus sp. RHA1. In this study, we...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Applied and environmental microbiology
دوره 61 9 شماره
صفحات -
تاریخ انتشار 1995